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GAMMA PROCESSES

P. A. W. Lewis, Naval Postgraduate School, Monterey, CA., U.S.A.
E. McKenzie, University of Strathclyde, Glasgow, Scotland, U.K.
D. K. Hugus, Department of the Army, Washington, D.C.. U.S.A.

Abstract

The Beta—-Gamma transformation is described and is used to define a very
simple first-order autoregressive Beta-Gamma process, BGAR(1). Maximum
likelihood estimation is discussed for this model, as well as moment
estimators. The first—-order structure is extended to include moving average
processes and mixed first-order autoregressive, pth-order moving average
processes. It is shown that these Gamma processes are time-reversible and,
therefore, too narrow for general physical modelling. A dual process to the
BGAR(1) process, DBGAR(1), is introduced, as well as an iterated process
which combines the Beta-Gamma process and the GAR(1) process of Gaver and
Lewis (1980). Some properties of these extended autoregressive processes are
derived. Several highly nonlinear extensions of these processes which
produce negative correlation are given. Use of the processes to model a
sequence of times between failures of a computer system is described.

0. INTRODUCTION

The Gamma distribution is used to model a wide variety of positive
valued random quantities in fields such as operations analysis, reliability
theory, hydrology and meteorology. Thus, service time distributions and
interarrival times in queues are often modelled as having Gamma distribu-
tions, as are wind velocities (Hugus, 1982; Brown, Katz and Murphy, 1984)
measured at successive discrete time points or river flows at successive
instants of time (Lawrance and Kottegoda, 1977). In all these cases, the

measurements are taken serially in time and are apt to be serially

dependent. Thus, development of time series with Camma distributed marginal -1—

distributions and various correlation structures is of great importance.

Gaver and Lewis (1980) showed that the usual linear first-order

autoregressive equation, X = oX *E_, would yield Gamma marginal -

n-1

distributions if the i.i.d. sequence {En} was chosen with suitable marginal ..

Q
8

distribution. This Gamma innovation distribution has a positive probability
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of being zero, so that the process (GAR(1)) generates sample paths which
exhibit 'runs-down' (as seen in river flow data), but which are "defective",
The defect lies in the fact that when En = 0, xn and Xn_1 are proportional
and p can be estimated exactly in long enough time serjies. Moreover, the
probability of the defect is higher for k small, which is precisely where
the model is needed, since the usual techniques of transforming to normality
are then questionable and probably undesirable.

Bernier (1970) introduced the GAR(1) model in a hydrological context
and McKenzie (1982) introduced a multiplicative Gamma process called PAR(1)
= product autoregression of order one.

In Lewis (1983) and Hugus (1982), a simple linear, random coefficient
model called BGAR(1) was introduced. It is based on the Beta-Gamma
transformation described in Section 1.

The purpose of this paper is to develop the properties of this BGAR(1)
model and to extend the idea to moving average and mixed autoregressive
structures. In particular, it is shown that these processes, like the
Gaussian ARMA(p,q) models, are time reversible and therefore are very
particular.

Several schemes for broadening the structure of Gamma time series are
given. In particular, a technique of iteration produces a Gamma autoregres-
sive process with two structional parameters that can model, for given
marginal distribution and serial correlation, different kinds of sample path
behavior. Some nonlinear schemes that produce negative serial correlation
are also introduced.

It is important to note the multiplicity of Gamma processes which can
be derived with given first- and second~order structure. Conseqently, in
the absence of a 'natural' structure such as exists for Gaussian processes,
our aim has been to produce simple structures, i.e., linear, additive,
random coefficient processes.

Finally, a series of times between failures of digital computers
(Lewis, 1964) is analyzed and fitted with the model. The data is serially
correlated with a marginal distribution which is more skewed than an
exponential distribution. Although this data is known to be generated by a

branching Poisson process (cluster process), the Gamma model is much simpler

)

(ANAAF N

PR TE 0 iy




- - - - = - - = T/ S T e, |
and much more tractable than the cluster process, and provides an adequate
v .
representation for most purposes.
) 1. PRELIMINARIES
In what follows we will use B(m,n), or simply B when the parameteriza-
tion is clear, to stand for a Beta random variable with parameters m > 0 and
n > 0, denoted by Beta(m,n). The probability density function for a
Beta(m,n) random variable is
AL
i‘:‘:“ T(m+n) m=1 n-1
e ; . - Sx$1:;m>0; 1.1
“:,;t: fa(xim,n) NOROE (1-x)" , 0<$xs$1;m>0; O, (1.1
i,
NG
1
{"‘ where T'(+) is the complete Gamma function.
;Q:zg We will denote by {B(m,n), B'(m',n"),++} an i.i.d. sequence of vector
PYR
:::'?g; random variables whose components are independent Beta random variables.
3
fiﬁn‘é‘l Let G(k,B) stand for a Gamma random variable with shape parameter
& k > 0, and rate parameter B > 0, denoted by Gamma(k,8). The probability
v;\i;g density function for a Gamma(k,8) random variable is
li;ﬁrl
i
Kige gKx K1 7BX
«,‘j{n‘ f‘G(x;k,B) oo x 20; 8>0; k>0, (1.2)
).
,:: We will denote by {Gn(k.B)}, an i.i.d. sequence of Gamma variates,
!":: A Gamma(k,8) random variable has moments
';’:’ -1/2
E(G) = k/8 = u; Var(G) = k/82; C(G) = s.a(G/u) =k ' '%, (1.3)
;"'
T,
;': where C(G) is the coefficient of variation, and Laplace-Stieltjes transform
":
"? -uG 8 k
- Lg(u) = Ele ") = (g5 (1.4)
S
5;5 .
;f\:,. The Gamma variable is sometimes parameterized in terms of the parameter
,‘"s’::. u = E(G). This is useful in statistical work, since the mean is a multi-
‘¥ -
A ' plicative parameter and G can be written as a unit-mean Gamma variate, G*,
i
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times uy, i.e., G = uG*, However, in what follows, we will use the fact that
two independent Gamma variates with the same f-parameters, but possibly
different shape parameters, add to give another Gamma variate

G"(k*+k',B) = G(k,B) + G'(k',B). (1.5)

The result is not true if the Gamma variates have the same mean but
different shape parameters.
The Gamma family of random variables include the Exponential(k=1),
Erlang(k integer) and Chi-Square(k=r/2, r=1,2,+++; B=2) random variables.
Gamma and Beta variates are intimately related and two of their
properties will be used throughout this paper.

(i) A Beta(m,n) variate may be generated as

G'(m,B)
G'(m,8) + G"(n,B8)’ (1.6)

B(m,n) =

where G'(m,B8) and G"(n,8) are independent. Furthermore, the ratio B(m,n) is

independent of the denominator G'(m,8) + G"(n,B) = G(m*n,8) and this

property characterizes the Gamma random variable (Johnson and Kotz, 1970a).
(ii) The Beta Gamma transformation. Multiplying a G(m+n,B) random

variable by an independent B(m,n) random variable gives a G(m,8) random

variable

G(m,8) = B(m,n)G(m+*n,8). (1.7)

Thus one can reduce the shape parameter of a Gamma random variable (multiply
by a Beta random variable), as well as increase it (add an independent Gamma
variate, as at (1.5)). A heuristic argument for the result (1.7) is that if
we wanted to perform the operation (1.7) on a computer, we could first
generate G'(m,8) and G"(m,8) to form the ratio (1.6) to obtain the B(m,n)
variate, There is, however, no need to generate G(m+n,8) in (1.7), we can

use G'(m,8) *+ G"(n,B), which is independent of the Beta variate.

Multiplication then gives G(m,8) = G'(m,8).




(iii) A formal proof of the Beta-Gamma transformation is a special
case of the following Lemma, which will be used in the sequel.

Lemma. Let X(k,B8) be a Gamma random variable and let B(kp,kp) be a

Beta random variable, which is independent of X(k,B), with p = 1-p

lying in (0,1). Then

E{e'(V*BU)X} . ( 8 ]kD [ 8 )kp

e T vz0,uzo. (1.8)

When v = 0, this result proves the Beta-Gamma transformation in the

form
X(kp,8) = B(kpikp)X(k,8). (1.9)

Proof. Using (1.4) and conditioning on B, we get

k
~(v+Bu)X B )k 8 . __8
E{e } = EBIEB*V*BU} , EBEB*V m i

B’mB

o L
8 Jk k+2-1[l-u £
- a5t - o ] e

where we have used the finiteness of the expectation to take the expectation
inside of the binomial expansion.

Now since E(BY) = B(kp+%,kp)/B(kp,kp) = F(kp+&)T(kp)T(k)/{T(k+R)T(kp)I(kp)}
we have that

K+2=1 L kK+L-1, T(kp+R)T(kp)T(k)
g JEGH = (T ) .
I'(k+2)T(kp)T(kp)

. D(k*2)I(kp*2) I(Kkp)F(k) - (kPrRT)
F(K)T(R+1)T(kp) F(KP)T(k+L) g
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Thus

IR (- U ytepty o § (KOIETT)(- u g

20 ) B+v =0 8+v
S S R S L
(‘ u +v+u B+v
B+v

and therefore

e“(V’Bu)X} - 8 )kp( 8 )kp

E{ B+v+u

which was to be proved.

2. THE FIRST-ORDER AUTOREGRESSIVE PROCESS, BGAR(1)

2.1. Construction of the Process.

Using the Beta-Gamma transformation, we can construct a very simple
first-order autogressive process {Xn(k,B.p)} with Gamma(k,8) marginal
distribution and a single parameter, p, that describes the dependency

structure of the process. We have

Xn(k.B.p) = Bn(kp,kp)xn_1(k.8,p) + BA(kp,kp)Gn(k.B) (0 £ p <) (2.1)

= B (kp,kp)X__ (k,8,p) + Y (kp,B) ne0,+1,...,  (2.2)
where {Yn(ka,B)} are i.i.d. Gamma(kp,8) variates independent of the
{Bn(kp,ko)} sequence. If Xn_1(k,8.p) has a Gamma{k,8) marginal
distribution, then multiplying by Bn(kp.kp) reduces it to a Gamma(kp,B)
variate and adding the innovation variable Yn(kp,B) creates the Gamma(k,R)
variate, Xn(k.e). The alternate form (2.1) shows the process as a
transformation of an i.i.d. Gamma(k,8) sequence, but clearly generation on a
computer would be done with (2.2). 1In the sequel, we will drop the

parametric notation where no confusion is possible,

RO P I N S A R PO ") h i, D5 B2 ¥ 9% e y
“‘»‘i“a'i"‘"“ »“u‘!h\‘ ,")‘0,,3‘( i,\@i‘% “%"’fi‘?‘i‘)i"s.|‘ b J‘:“;‘it“l“— i"f“‘leiv’i*‘: i" t t-‘#‘ hﬁ}?g ..bﬂ‘«‘wia.‘" A
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ﬂff It is clear that taking X. to be a Gamma(k,B) variate will start the

. 0
a process in a stationary mode. Also, the process is Markovian by
. construction,
3
o 2.2. Serial Correlation.
“5: It is easily established, using moments of Beta variables, that
0%y
) p(r) = Corr(X_,X__ ) = olrl, ro= 0,41,42,000 , (2.3)
5 8% n’ n-r
_Al\r":'
£y
JERIN
f@ﬁ Thus, in the three parameter process, the parameters k and B describe the
marginal distribution of the process and p independently describes the
LFORS
;iy correlation structure. Note that since the process is only defined for
DO
B0 0 £ p <1 the correlations are non—negative.
W
RIS
2.3. Joint Laplace-Stieltjes transform.
&
fﬁ; In the stationary process {Xn}. let Lx X (u,v) denote the joint
‘ ;1 n' n-1
:ﬁﬂ Laplace-Stieltjes transform of the adjacent variables Xn and Xn_1. Then we
(FoH
b have
o
1’3";, - - -—
s Ly X (u,v) = E[exp{-X u Xn_1v}]
o n-1
a’tl; - - - -
Elexp(-B X _ u~Y u-X _ v}]
J
L) - - +
o - E(e UT)p(e (VIBUX) (2.4)
A
N
J
&Qﬁ where, in the last step, we have dropped the indices n and n-1 because of
o stationarity and have used the assumed independence of Yn and Xn_1 to write
%f 3 the expectation as the product of two expectations.
D)
»:v 4

Now the second term is evaluated in the Lemma of Section 1 and we have

SO g { ] ) ; \ ., : A )
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L (uov) = (B)KP(L)kP(_B_)ke

xn,xn_1 B+u B+v B+v+u
B B \kp(_ B ke
- (- R (2.5)

Since this transform is symmetric in u and v, the joint distribution of

Xn and X is symmetric. Also, since the joint distribution of any set of

Xn's ca: ;e obtained from (2.5) and the marginal Gamma distribution, the
Beta-Gamma process is time-reversible.

Note, too, that we have directly from the defining equation (2.2) that
the regression of Xn on Xn_1 = x is linear:

E(X X, .q=x) = px + (1-p)k/8 = px + (1-p)u. (2.6)

n-1

The time-reversibility of the process shows that

E(Xn_1|Xn-y) = py + (1-p)u. (2.7)

2.4, Convergence to a Gaussian AR(1) Process.

As k gets large, the standardized Gamma(k,1) variate X' = (X—k)/k”2

converges to a standardized Gaussian variate. To prove this, consider the

pair Xn and Xn in the BGAR(1) process. The joint characteristic function

-1

for the standardized variables Xa and Xé_ is, using (2.5),

1
(s,t) = E{exp(-isXé-itxa_

ik1/2(s+t)E

)

—1/23"“3E

¢Xv X!
n’"n-1

- —kp - -
- 1+isk 1+itk 1/23 {1+ik 1/2(s+t)} ke

-1/
Taking logarithms and expanding in powers of k 2 gives

372

y L (s,t) = ik P(set) - kplisk T P=(18)%/(2k)+0(k”
n-1

)}
)}

X!, X
1 3/2

- kplitk72=(it)2/ (2k)+0 (k"

/2

~ kolik 2 (set)=(1)2(s+ )2/ (2k)+0(k 372y}
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and as k»=, this converges to

Yo, v, (S8,t) = - l{s’+t'+293t}. (2.8)
X', X 2
n’ n-1

Thus, since the process is Markovian, the BGAR(1) process is equivalent to a

Gaussian AR(1) process when k becomes large.

2.5. Additivity and the GAR(1) Process.

Gaver and Lewis (1980) showed that the usual linear stochastic

difference equation
X = pX + E , (2.9)

will give a process (GAR(1)) with Gamma(k) marginal distributions if En is
the Gamma innovation variable GIn(k,p) with Laplace-Stieltjes transform
{(1*ps)/(1+5)}k, where 0 £ p < 1, This variable can be simulated by methods
given by Lawrance (1982) and McKenzie (1986).

Note that the GAR(1) process is a linear additive (constant
coefficient) process and adding two independent GAR(1) processes with the
same B and p values, say {X;(k1)} and {X;*(kz)} gives a new GAR(1) process
with shape parameter k1+k2 and dependency parameter p. This is not true for
the BGAR(1) process which is a random coefficient, linear additive process.
The process obtained by addition is a process with Gamma marginals and

|r|' but it is not even Markovian. Additional

correlation structure p(r) = p
differences between the processes are that while the BGAR(1) process is
time-reversible, the GAR(1) process exhibits 'runs down'. In fact, it is
degenerate in the sense that the innovation variable GI_ is zero with

probability pk. Thus, we get Xn/Xn_ = o with probability p , and p can be

1
estimated exactly in long enough series (Gaver and Lewis, 1980). This

degenerate behavior is not exhibited by the BGAR(1) process. A method for

combining two processes to obtain a broader process is described in Section

5.




2.6. The Conditional Density for xn, Given Xn_1 -y,
From the definition (2.2), we have that

P{X s x|xn_1 = z} = P{B_(kp,kp)z *+ Y (kp,B) S x}
= P{Y_(kp,B) S x = B (kp,kp)z}.
Now, by definition, Yn(kH.B) is independent of X,y and of Bn(ko,ka). Thus

conditioning on Bn and differentjating with respect to x yields the

conditional density for Xn, given Xn_1 = 2z, as

fx |X (x,y) = I(k) — x kkpe-kx x20,yz20
n'“n-1 F(kp){I(kp)}?
Lo kp-=1 Kyw
x J WP (1= (x~yw) eV aw, (2.10)
0
where
1 if x 2y,
L = (2.11)

x/y ir x <y,

and, for simplicity, the scale parameter 8 has been set equal to one.

This density is a continuous function of x and absolutely continuous
except where x = y, Its utility is in obtaining maximum likelihood
estimates of the parameters 8 (or u), k and p. This is discussed in the

next subsection,

2.7. Moment and Maximum Likelihood Estimates in BGAR(1).

There are "natural" moment estimators for the three parameters in the
BGAR(1) model, namely the mean, u, (or 8), the shape parameter, k, and the
first-order serial correlation coefficient, p. From (2.3) and (1.3), these

estimates are, from a sample (observed time series) of length n,

10

g
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n
i=X= ) X.1/n, (2.12)
j=1 *

. k = (X)2/52, (2.13)

where S? is the sample variance, and

n-t
, B= I (X,-X)(x,,, ~X)/{(n-1)8%]. (2.14)
. L i+1
i
a’;t n .
e The variance of #i is var(X)[1+2 § {1-(r/n)}p 1/n and nVar(@) is

EE r"
asymptotically equal to u?(1+p)/{(1-p)k}. More general properties of the

;‘e: estimates K and p, however, are hard to derive. But, their distributions

"\Qi .

1;.:', are independent of the scale parameter u.

[N )

»::: In Table 2.1, we give the simulated standard deviation and bias of the

LA

{2 estimates K and P for values of k = 0.25, 0.75, 1.0, 2.0 and p = 0.25,

oA

a‘:‘; 0.60, 0.90 for various values of n. Note that the values of n differ with

L /

".‘: p, since the "equivalent sample size", n'-n[(l*p)/{(1-p)k}]1 2. is

ERE N

::: different. Here n' is the sample size which would be needed, for given p,
to achieve the same variance for §i as in the p=0 (independence) case. The

::‘,f simulation study was performed with the SUPER~SIMIBED program of Lewis, et

4

fol al. (1985).

2R

fjff Two other properties of the process may be useful in validating the

D BGAR(1) model from data.

;.t. The first is that difference of successive values in the time series,

)

',E;: D, = X 4q~X,» have an f-Laplace distribution (Dewald, 1985). This result

)

o comes from (2.4),
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after converting to characteristic functions and setting v = -u. We have
the characteristic function

o (u) = Lx X (iu,-iu)

n n’ n-1

i }_e_ 8 g“". Eﬁ}“"
B+iu 8-iu 8

g2 |<°
B EB’*U’} .

This is the characteristic function of an f-Laplace random variable with

£ = kp; the distribution is symmetric about zero. It goes to a Normal
random variable as & » =, but for & £ 1, the density function is not
absolutely continuous at zero. In fact, for L £ 1/2, the density is
infinite at zero. The fact that the difference has median value O,
irrespective of the value of p or B, can be useful in validating the model.

Consider, now, ratios Rn = xn‘1/xn; from (2.2) this is

R = B,y (kpokp) + ¥ (Kp,B)/X, .

But Yn¢1(ka.8) and xn are independent Gamma variates, SO that, if k>t,

E(R)) = E{B ,, (kp,kp) + EQY . (ke B)/X }

n+t
= p + (Kp/B)/{(k=1)/8} = 1 + p/(k=1). (2.15)
Higher moments can also be obtained.

These results could be of use in validating the model. Another

possibility for validating models is the higher-order residual analysis of

Lawrance and Lewis (1986).




Joint-maximum likelihood estimates for k and p (and perhaps u) can be

)& obtained from the conditional density (2.10) and the formula for the joint
!, "
- gd 3 cs e s
{%\ density of xn'xn-1’ ,X1 is
0‘.'! L4
A
Flx 35X _.3°0e5x,) = f (x_;x . )xf (x__.ix __)x eee xf_ (x,.),
" n'"n-1 1 X X oy Tt =X X, Tn=1 2 X,
il
3
) (2.16)
" )
B,
‘ where fx (x1) is a Gamma(k,1) density.
1
{b Hugus (1982) used (2.16) to obtain joint-maximum likelihood estimates
0
'ﬁ{ for k and p. Three cases are shown in Figure 2.1. Generally, when k is
o
@ﬁ greater than 1, moment estimates of k and p are quite efficient, which
M
{3 agrees with results for independent Gamma(k,!) variates (Bartlett and i
§J Kendall, 1946). However, when k is less than one, the maximum likelihood |
gkl estimates become much more efficient than the moment estimators. ;
aeol - -~ !
?f‘ The moment estimators, u, x, p, given at (2.12), (2.13) and (2.14) serve
£ )
as good starting points for numerical evaluations to find the maximum
iﬁ likelihood estimates, u, k, p, of k and p. Techniques for the numerical ‘
) |
4&' integration of (2.10) are given in Hugus (1982).
By
v
) 3. MOVING AVERAGE AND HIGHER ORDER AUTOREGRESSIVE STRUCTURES
A
o The Beta-Gamma transformation can be used to generate dependency
)
f%o structures other than first-order autoregressive structures for Gamma
r'.‘
disbributed time series. Several of these structures are given in this
- section.
P
Pk
3
B 3.1. The First-Order Moving Average Process, BGMA(1). |
- The first-order moving average process, the BGMA(1), is constructed in
3: essentially the same way as the BGAR(1) above. If {Gn} is a sequence of
4 &
!k i.i.d. Gamma(k,B8) random variables and {Bn} is an independent sequence of
o.. - -
;{' i.i.d. Beta(ka,ka) random variables, where a = 1-a, we define the (backward)
d‘.'b -

BGMA(1) process {Xn} by

15
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Figure 2.1

Simulations of joint maximum likelihood estimates for k and p and joint moment
estimates for k and p, for three different sets of values of the parameters.
Ten replications for each case. Top left figure: p=0.75, k=4.0;
figure: p=0.25, k=4,0; bottom figure: p=0.75, k=0.75.
to estimates of p; the symbol (o) refers to estimates of k.
Joint estimates; small symbols are marginal estimates.

top right
The symbol (+) refers
Large symbols are
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Xn = Gn + Bncn-1’ 0sSasit, (3.1)

Evidently, {Xn} is a stationary process and Xn and xn-r are independent
if |r| > 1. The marginal distribution of Xn may be derived by noting that
the right-hand side of (3.1) is the sum of a G(k,8) random variable and an
independent G(ka,8) random variable. Thus, Xn is a G{k(1+a),8} random
variable. This process has the same structure as the usual Gaussian MA(1)
process, except that here the coefficient, Bn' is a random variable rather
than a constant. An immediate effect of this construction is that the
observed and innovation processes, {Xn} and {Gn}. respectively, have
different Gamma marginal distributions. This is in contrast to the
structure of the EARMA processes (Lawrance and Lewis, 1980), where it was
deliberately arranged that they should have the same distribution. However,
as we shall see shortly, this disparity in marginal structure has some
advantages. b

From the viewpoint of modelling, it is more useful to determine the
parameters of the innovation process in terms of those of the observed
process. For this reason, we reparameterize (3.1) slightly. We consider
(Gn} to be i.i.d. Gamma{k/(1+a),B} r.v.s. and {Bn} to be i.i.d.
Beta{ka/(1+a), ka/(1+a)} random variables. This yields an observed process
{Xn} which is Gamma(k,8).

We may note that if we write p = px(l) = a/{(1+a), then Gn is

Gamma(kp,8), the same innovation process as for the BGAR(1) process.

3.2. Autocorrelation Function for the BGMA(1) Process.

The autocorrelation function for the moving average process may be

determined directly. Thus, Cov(xn.xn_1) - COV(BnGn-1’Gn-1) = E(B)Var(G),
and so
a
Tear vl =1
o (r) = | '@ (3.2)
o, |r] > 1.

For |k| = 1, the attainable range of correlation is 0 s px(1) € 0.5, which
is the full possible range of positive correlation. This is because, for a

17




first-order moving average, |px(1)| s 0.5; see, e.g. Hugus (1982). The fact )
f{& that the whole positive range is available is important, because it is in
contrast to the EMA models (Lawrance and Lewis, 1977; 1980), where
) correlation is bounded above by 0.25. The greater flexibility in (3.2) is a
result of the innovation and observed processes having different
distributions. Since for k = 1, the Gamma distribution is an exponential
distribution, the BGMA(1) process is then a broader first-order exponential

R moving average process than the EMA(1) process.

{Qét 3.3. Joint Distributions.
L)
:2§ The bivariate Laplace transform of (xn+1'xn) can be derived by using
e b -

:igﬂ (1.8). Thus, again, using the notation a=1-a, we have
i»
§§§} L(u,v) = E{exp( uxn" vXn} = E{exp( an+‘ UBn¢1Gn an VBnGn-1)
K
ﬁﬁtk - LG(u)E{LG(v*uB)}LBG(V)

R

R ka ka Ka

_%s%}e}[s} (3.3)

s 8+u Bev B+u+v

-;‘a':

i

ﬁa, using the Lemma above. This has exactly the same form as the joint
&3; transform, (2.5), of (xn*l'xn) for the BGAR(1) process with a corresponding
) to p. This, too, corresponds to the behavior in Gaussian processes, where
&;: the joint distributions for the autoregressive and the moving average
?'r‘ {\l

¢ processes have the same form and differ only in their autocorrelation
".é].

{{é functions. An immediate consequence is that the conditional distribution of
. Xn*1 given Xn, and Xn given Xn*1, have exactly the same form as for the
BN BGAR(1). We note the somewhat unusual result for a non-Gaussian process
AN

Jhg that regression is linear in both directions, even though the process is a
’ﬂf? moving average. In fact, E(xn¢1|xn-x) = E(xnlxn’1-x) = ax+ka/B = ax+aE(X).
. The joint Laplace transform of any finite set of consecutive
)
fkﬁa observations can be obtained by the procedure that yielded (3.3). Thus, the
Y
‘i|‘f sen
225, joint transform of (Xn'xn-1' 'xn-r*t) is given by
N 00

!:?.:‘ [

A . ' ( J ; \ :
'..“'-‘Ih’v\"‘vsk"'u"l.‘i':‘"‘.l‘e‘l'.‘t‘ ‘J:‘ ‘:a'l's‘ ‘,‘D"lx‘hﬂ“"v.ﬂh.”‘!i%"'*,ﬁl!‘fz“i'l; ‘:r"f ? Vi



]_.,(u1 .uz’oo-‘ur) I~ %

8 }ka‘rﬂ E 8 }k(1'2u)x % 8 }kax :“I
Bruy) a2

(3.4)

Note that this is not the r-dimensional transform for the BGAR(1) process.

Equality holds for only r = 2,

One consequence of (3.4) is that, since L(ul,u

L(u yu

r’r-1"’
The bivariate Gamma distribution whose transform is given at (3.3) is

well known (Johnson and Kotz, 1970b, p. 219) and is called by Ghirtis (1967)
the double Gamma distribution, Since the multivariate form of this
bivariate GCamma distribution arises as the individual sums of m independent
Gamma variates with a common, independent Gamma variate, it is doubtful that
triples,
multivariate distribution. In fact, (3.4) shows that this is not so for the
moving average process.

Another result that we can immediately derive from the joint transform

is the distribution of the sum of n consecutive observations. This has a

r
particularly simple form for the BGMA(1) process. If Tn = I Xi then
i=1
LT(u) = L(u,u,**°,u), which, from (3.4), is given by
8 k{r-2(r-1)a}l 8 k(r-1)a
oty = fo e (5.5

Further, since 0 € a € 0.5, we can rewrite (3.5) in terms of random

variables as

where the two Gamma random variables are independent.

3.4,

Higher order moving average processes may be constructed by extending

the BGMA(1) in an obvious way. Thus, the GBMA(q) is given by

say X

2'.."ur‘) =

---,u1). the process is time-reversible.

neo? Xn+1, Xn’ in the BGAR(1) process would have this

Tr = Glk{r-2(r-1)a},8] + 2G{k(r-1)a,8},

Higher Order Moving Average Processes.




Xn = Gn * .? Bn,iGn-i' (3.6)

q
where {Gn] is a sequence of i.i.d. Gamma{k/(1+ Zai).B} random variables and
1
(Bn i} is an independent sequence of ji.i.d. vector random variables with
b}
q q
/(1*201)} random variable. In

Bn,i’ i=1,2,°e¢,q, being a (kai/(1*fai), ka ;
this case, {xn} is a stationary Gamma(k,B) process with Xn, xn-r independent

when |r| > q. The autocorrelation function is given by

7 )
a_  + a.a, /|1 o+ a
roogmy 3T §=1

j r=1,2,...,Q
px(r) =

0 _ r>aq,

which, again, is a close analogue of the usual autocorrelation function for
the Gaussian MA(q) process. The major difference is that all the

correlations are non—-negative.
4, THE MIXED AUTOREGRESSIVE, MOVING AVERAGE PROCESS, BGARMA(1,1)

A more complicated dependence structure in Gamma distributed variables

that is the analog of the usual linear ARMA(p,q)-type process is now given.

4,1, Structure of the Mixed Process, BGARMA(1,1).

We can construct an ARMA-type process with a Gamma marginal distribution

by combining the two first-order processes we have discussed above. For
convenience, we write each in a slightly different form. The moving average

component is given by
X =¥ + B G, (4.1)

where {Gn}. {Bn} are as given in Section 3.1 above, i.e., independent

sequences of i.i.d. Gammaf{k/(1+a),8} random variabes and i.i.d.

20




Beta{ka/(1+a), ka/(1+a)} random variables, respectively. Notice that Bn is

o the coefficient of Gn in (4.1), whereas it was associated with Gn-1 in
815

;ge (3.1). Clearly, this change will make no distributional difference and, as
iﬁ? ) we shall see, renders the parameters of the ARMA model more readily

interpretable. The sequence {Yn} is generated from a BGAR(1) process given
by

Ty Yn = AnYn_1 + A&Gn. (4.2)
i The process {Gn} is as above and {An} and {AA} are independent sequences of
i.i.d. Beta{kp/(1+a),kp/(1+a)} and i.i.d. Betalkp/(1+a),kp/(1+a)} random

i variables, respectively. If Yo is G{(k/(1+a),B8}, then so also is Y and
AN

{ the required stationary process {Yn} results. The product Ar']Gn is, of
gﬁ course, the Gamma{kp/(1+a),8} random variable used as the innovation process
;Bf in Section 2.1 above, but is written in this form here to make explicit the
i%é dependence on the innovation sequence Gn'

4,2, The Autocorrelation Function of the BGARMA(1,1) Process.

< The autocorrelation function of {Xn} may be derived in the usual way.

ff Thus, Cov(Xn,X ) = Cov(Y _ 1,Yn —p- 1) + Cov(Y -1'Bn-rcn-r)'

J _ rNow Cov(Y _ 1,Y nep=q) = P "Var(Y), and Cov(Y _,,B G _) =
ﬁ%: app Var(G), so that we obtain
L
N -
"|. = L___’ ap r‘ 1 - cee
gg (r) T+ o r 1,2, . (4.3)
? This is the form of the autocorrelation function of the ARMA(1,1) process.
:g: Note, too, that the choice of the slightly different structure for (4.1) and
(34}
%& (4.2) has endowed the two parameters (p,a) with physical significance.
Yy

Choosing a=0 effectively sets Bn to zero, so that the process is now simply
ﬁf the BGAR(1) process, and we can see from (4.3) that px(r) becomes pr, as

(I

-5% expected. If we choose p=0, then Yn becomes Gn and {an is the BGMA(1)
¢
,ha process, and (4.3) reduces to a/(1+a), as it should. The reduction of the
I‘(, -

mixed model to its simpler forms when the parameters vanish is a consequence
:? of the structure we have chosen,
o
z
K
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4,3, Joint Distributions in the BGCARMA(1,1) Process.

The joint distribution of two consecutive observations of the process

{Xn} can be derived in the form of the corresponding Laplace transform.
Thus »
L(u,v) = E{exp(-an

§1-vXn)

= - ' - - -
E(exp{-u(A Y _ +A'G ) - uB .G .. ~ VY | vB G 1]

LBG(u).E{LY(V*uA)}.E{LG(uA' + vB)}.

The first two terms of this product have already been evaluated and we now
consider the third. By considering appropriate series expansions, we can

evaluate the third term in the form

;o7 w0t | reesn)r(peem)r(ermen)r(o)
me0 n=0 ™ n! r(a®)T(pO)r(0+n)r(o+m)

where O = k/(1+a). Hence, we can show that L(u,v) is given by

: Opy , }9Ca+p) —uv
l(1+u)(1+v)l I1¢u*v oFy (00300, 0,75755 ), (4.5)
where 2F1 is the Hypergeometric function, defined by
S r(a*n)r(b+n)ric) . z"
a*tn n C 2
Frlabiesz) = 1 T el

n=0

The behavior and properties of this function are detailed in Abramowitz and
Stegun (1964, Ch, 15)., It is easily verified that when p=0 or a=0, the
appropriate forms of L{u,v) result from (4.5). The transform corresponding
to higher~dimensional distributions are more difficult to obtain in closed
form, although, in principle, series expansions of the form of (4,4) can be

derived. <
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Further, the symmetry of L(u,v) in u and v implies that the conditional

distributions of X given Xn and Xn given Xn+1 are identical. In

n+1
particular, we can recover the conditional moments from (4.5) and it is
found that regression is linear and the conditional variance is quadratic in

X .
n

4,4, Higher Order Mixed Processes.
Higher order BGARMA processes can be derived by suitable extensions of

the BGARMA(1,1). In particular, it is straightforward to construct a

BGARMA(1,q) process by replacing (4.1) by an MA(q) form as in (3.6). Thus,

qg‘

X = B .G _.+Y

n jep nmin-i n-q

replaces (4.1) and (4.2) is as before. The more general problem of
extending to higher order AR forms is more difficult. One way of achieving

it, however, is to use mixtures (random indexing). For details, the reader

is referred to Lewis (1985).

5. DUAL AND ITERATED GAMMA PROCESSES

The first-order autoregressive Beta-Gamma processes given in equation
(2.1) has been shown to be time-reversible. This can be a handicap in
modelling phenomena such as water run-offs, which tend to have 'runs down'
in their sample paths. This is modelled, as noted, in a defective way by
the GAR(1) process of Gaver and Lewis (1980). We, therefore, look for other
Gamma processes, possibly with more than one parameter to model dependency
structure, which broaden the BGAR(1) process.

The first process to consider is the dual of the BGAR(1). The duality
refers to the fact that where in (2.1) we decrease the shape parameter, k,
of Xn-1 by using the Beta-~Gamma transform and then bring it up to k by
adding an independent Gamma variable, we now increase k in Xn_1 by adding an
independent Gamma variate and then decrease the parameter to k by using the

Beta-Gamma transform. Thus, we have
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X_(k,8) = B(k,q)(X _, (k,8) * G (a,B)]}. (5.1)

However, it can be shown that the joint transform of Xn and X is

(1*u)-q(1*v)-q(1+u+v)q—k2F1{q.q;k+q;uv/(1*u)(1*v)}. so that the pro;LsL is
time-reversible. We thus have nothing new by way of broadening the BGAR(1)
process.

Another approach to broadening the BGAR(1) structure is to iterate the
process. Thus, in (2.1), the left hand side is a Gamma(k,8) random variable
and the procedure in (2.1) can be reapplied. However, a time-reversible
process is again obtained. A better way to iterate is to apply the GAR(1)
procedure to (2.1) and obtain a combination of the BGAR(1) and GAR(1)
processes:

X (k,8) = Y{B!(kp,kp)X _, + ¥ (kp,8)} + GI (KY,8) (5.2)

1

- YB!(kp,kP)X__, * YY (Kp,B) + GI (KY,8), (5.3)

where 0 S Y €1, 0 $psS1, p=Ye#1, k>0 and {GIn(kY,B)} is a sequence
of i.i.d. Gamma innovation random variables with Laplace-Stieltjes transform
{(3+Ys)/(8*s)}k. independent of {86} and {Yn(kE.B)}. The condition that p
and Y do not both equal one is necessary to obtain an ergodic process. Note
that (5.2) is different from the combination given in Lawrance and Lewis
(1982) and we denote it by GBGAR(1),

Now in (5.2), the case Y=1 gives the BGAR(1) process, Y=0 and/or p=0
gives an i.i.d. sequence (Xn} while p=1 gives the GAR(1) process. Thus, we
should find sample path behavior running from time-reversibility to 'runs

down' behavior., Also, the process is Markovian and has serial correlation
|r|
p(r) = (Yp) ro=0,21,42,°99, (5.4)

For the joint Laplace-Stieltjes transform of Xn and xn-1' we have
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Ly .x (u,v) = E{exp(-uX -vX _,)}
n’"n-1
1]

- - ' 5 - "y - -
Efexpi uYBn(kp,kp)xn_ uYYn(kp.B) uGIn(kY.B) vX

1

_{Bﬂu}kEB . s;"" 8 ]""
8+u B+uY  B4v B+v+uy *

Thus, it can be seen that the process is not time-reversible unless Y=1 (the

n-t

BGAR(1) case). The regression of X,onX _, =xis

ex) = p(1)x + {1=p(1)}E(X),

E(xnlxn-l

which is linear in x, but it is not the same as E(xn-1|xn'X)'

To separately identify the parameters Y and p in this process, one must
go beyond second-order properties of the process. This is because the
parameters enter into the correlation (5.4) as a product. Higher order
residual analyses (Lawrance and Lewis, 1986) and maximum likelihood

estimation will be considered elsewhere.
6. NEGATIVE CORRELATION AND NON-LINEAR PROCESSES

All of the processes described above are limited by their serial
correlations being non-negative. There are a number of ways of extending
the processes to give negative valued serial correlations and we discuss one
of them in some detail. All methods involve non-linear functions of, say,
xn__1 in a first-order autoregressive process. This is necessary because of
the non-negativity and lack of symmetry of Gamma disributed varjates.

6.1, Antithetic Variates.

Let X be a continuous random variable with c.d.f. Fx(x) and inverse
c.d.f. F;1(a). 0 < a <1, Then the random variable X* = F;1{1-FX(X)} is
called the antithetic variable to X. For symmetric two-sided random
variables centered at zero, X* = =X, For positive valued variables such as
Gammas, X* has the maximum attainable negative correlation for bivariate
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Gamma pairs (Moran, 1967). In particular, if k=1 (Exponential),
Xt = -1n(1-e-x). but if ke!1 the transformation is difficult to compute.

Ir xn_1 in (2.1) s replaced by X;_1 in (2.1), then a very non-linear,
Markovian first-order autoregressive process is obtained. Serial

correlations beyond lag one are difficult to compute.

6.2. Coupling.
Gaver and Lewis (1980) introduced a scheme in the context of the GAR(1)

processes for cross—coupling two Gamma processes so that the marginal
processes will have negative serial correlations. It is actually easier to
implement this scheme for the BGAR(1) process than for the GAR(1) process,
because the random, Beta distributed coefficients are continuous. We do not

pursue this here.

6.2. Inverse Processes.

A direct scheme for obtaining negative correlation in a Gamma process is
now given., It is a generalization of a scheme given by Lewis (1983) to
generate negatively correlated bivariate Gamma pairs. Its utility lies in
the fact that the sequence can be generated with nothing but i.i.d. Gamma
variates, no numerical inversions of inverse distribution functions are
required.

Thus, let Bn(k;q-k), for q > k, be a sequence of independent
Beta(k;q-k) variates, independent of G;(q) ang§G;(k*q). which are
independent sequences of independent Gamma variates, n=1,2,+++, Also, let
Xo(k) be a Gamma(k) variate, where k > 0. The idea is that we want Xn(k) to
be small when xn-1(k) is large, while retaining the Gamma(k) marginal
structure of the process. We have

Ga(q)

Xn_l(k)¢GA(q)

X, (k) = B_(k,q=K) G"(k*q) Qq 2Kk, n=1,2,¢c¢, (6.1)

Note that the ratio is Beta(q;k) and, by the Beta-~Gamma transform
(1.7), the product of this ratio with the independent Gamma(k+q) variable is
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a Gamma(q) variate. The multiplier Bn(k;q~k) reduces the shape parameter
from q to k.
To obtain p(1), the correlation between X (k) and X _,(k), we need

61(Q)X__, (k)
ELX_(0X__, () = E[Bn(k;q-k))E‘xn_1(k) oy O ea))
.k (keq) l Sal g ) (6.2)
R B S (SRR

To evaluate the remaining expectation in (6.2), we use the fact that in an
expression such as Xn_1(k)/(xn_1(k) + Ga(q)}, the denominator is independent

of the ratio. Then we have, after some manipulation, that

G (q)Xn__1 (k) kq 6.3)

E X () + G'(Q)} = Blk+q+1)"

Combining (6.2) and (6.3), we get the suprisingly simple result that

Corr(X_ X _) = p(1) = - ;;5;7 qQ> k. (6.1)
This correlation is always negative and if k = 1 (the Exponential case),
p(1) has a minimum attainable value of =1/3 when q = k. This is about
halfway to the minimum attainable correlation for bivariate Exponential
variables of -0.61.

The scheme can be iterated to achieve greater negative serial
correlation. In this and the scheme (6.1), serial correlations of higher
order are difficult to obtain. However, since the process is Markovian, the
decay of the absolute values of the serial correlations is geometrically

bounded.
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7. AN ANALYSIS OF TIMES BETWEEN FAILURES OF A COMPUTER SYSTEM

Hugus (1982) used the Beta-Gamma process to analyze a long sequence of
wind speeds. This sequence is very non-stationary, containing yearly
cycles. The model actually used is u(n)G;. where u(n) is a log-linear
function of n and G; is a unit-mean BGAR(1) process.

A simpler, stationary series of times between failures of a computer
system is analyzed here. Although this data is known to be generated by a
branching Poisson process (Lewis, 1964), the Gamma model is much simpler and
much more tractable than the branching Poisson process and provides an
i adequate representation for most purposes. Modelling of these times between
failures is important because, for example, they represent times at which
requests for service to the computer are made.

In Figure 7.1, we give a Gamma probability plot for the 256 times
between failures. The fit appears adequate, but the goodness of fit
statistics in the table in Figure 7.1 must be used with caution, since the
data is serially correlated and two parameters have been estimated from the
: data. The parameter k (ALPHA in the table) is estimated as k = 0.704. Note
% the two outliers in the Gamma probability plot. Since these are serially

lf adjacent, they probably represent a lapse in recording of computer failures.

In Figure 7.2, we show a correlation analysis of the data. The decay in

™

correlation from $(1) = 0.353 to higher lags is consistent with first-order

autoregressive correlation structure. The bands in the figure are

-~ -

approximate confidence intervals for each f(k) under the assumption the true

.
-y

correlation is zero for lag greater than k. (See Box and Jenkins, 1976, p.
35 for details). Clearly the times between failures are correlated and thus
a renewal model, say, for these times between failures would be inadequate.
The partial autocorrelation plot in Figure 7.2 also confirms the first-
order autoregressive nature of the data. The last panel in Figure 7.2 shows
the autocorrelation function for the estimated residuals, Rn-xnr;(1)xn_1; .
there is no significant correlation in this series.
Finally, in Figure 7.3, we give empirical density functions (kernel
density estimates) for the successive differences, xn-xn-1'
successive ratios xn/xn_,. ne2,3s¢s, which were discussed in Section 2.7.

n=2,3,°¢+ and
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The differences show a highly symmetric and long-tailed density function
which is consistent with an f-Laplace distribution. Note that the median of
the differences is estimated to be -9, Given the range of the differences,
this is probably not significantly different from the value of zero which
would hold for the time-reversible Beta-Gamma process. The ratios, Xn/xn_1 ,
have an estimated mean of 10.812 with estimated standard deviation of
42.432/(255) "2

inadequacy in the Beta-Gamma model for characterizing the data.

= 2.66. Thus, there is nothing here to suggest any
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Figure 7.2

Autocorrelation structure of times between

failures of a computer system
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